
COMPUTING LOGARITHM FLOORS

IN ESSENTIALLY LINEAR TIME

DANIEL J. BERNSTEIN

Abstract. This paper fills a gap in some incomplete algorithms stated in

the literature, notably a recent algorithm for determining primality. What
this paper presents are algorithms to compute b(logn)2c and b

√
m lgnc, given

positive integers m and n. Here log is the natural logarithm, and lg is the

base-2 logarithm. Baker’s theorem on linear forms in logarithms implies that
the algorithms take essentially linear time if lgm ∈ (lgn)o(1).

1. Introduction

As usual, log is the natural logarithm, and lg is the base-2 logarithm.
Section 2 of this paper presents an algorithm that, given a positive integer n,

computes b(log n)2c and d(log n)2e. The algorithm takes time at most (lg n)1+o(1).
Section 3 presents an algorithm that, given positive integers m and n, computes

b
√
m lg nc and d

√
m lg ne. The algorithm takes time at most (lg n)1+o(1) if lgm ∈

(lg n)o(1).
Previous authors have implicitly—and, I suspect, unintentionally—assumed the

existence of polynomial-time algorithms for these two problems. See Section 4 for
further discussion.

Proving computability. The usual way to compute bαc and dαe is to compute
high-precision bounds on α. My paper [7] explains how to quickly compute high-
precision bounds on logarithms. But this is not enough: what happens if α is an
integer?

Answer: Lindemann’s theorem implies that (log n)2 is not an integer unless it is
an obvious integer, i.e., unless n = 1. The theorem states that an algebraic number
outside {0, 1} never has an algebraic logarithm; in particular, log n is not algebraic
for n > 1. See [3, page 1].

Similarly, the Gelfond-Kuzmin theorem implies that
√
m lg n is not an integer

unless it is an obvious integer. The theorem states that (logα1)/logα2 is never
a quadratic irrational; here α1, α2 are algebraic numbers outside {0, 1}. This is a
special case of the Gelfond-Schneider theorem, which states that (logα1)/logα2 is
never algebraic unless it is rational. See [3, pages 1–2].

Permanent document ID: 97bbdc1ce6aff974c789eab21b9cfba1.

Date: 2003.06.30.

2000 Mathematics Subject Classification. Primary 11Y16; Secondary 11J86.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the Alfred P. Sloan Foundation.

1

2 DANIEL J. BERNSTEIN

Proving essentially-linear-time computability. Even if α is not an integer,
what happens if α is extremely close to an integer? Bounds on α of increasingly
high precision will eventually separate α from that integer, but what happens if the
required precision is, say, exp exp exp b, where b is the number of bits of input?

Answer: Baker’s theorem implies that b1+o(1) bits of precision suffice. Explicit
bounds appear in Sections 2 and 3. (Similar applications of transcendental number
theory appear in [5] and [9].)

Beware that the bounds say nothing about real-world computations: they include
extremely large constant factors. I have made no attempt to optimize those constant
factors. The algorithms here are nevertheless reasonably fast in practice, because
they start from low precision, using higher precision only if necessary.

2. Floor of logarithm squared

Here is an algorithm that, given a positive integer n, computes b(log n)2c and
d(log n)2e:

1. If n = 1: Print 0, 0 and stop.
2. Compute a precise interval [L,R] containing log n, as explained in [7].
3. If [L2, R2] does not contain an integer, print bL2c , dR2e and stop.
4. Double the number of bits of precision. Go back to step 2.

This algorithm is parametrized by the starting precision. It is simplest to start
with 1 bit of precision; it is fastest to start with slightly more than 2 lg log n bits of
precision.

The following theorem states that the algorithm terminates once the precision
reaches approximately 3 ·21000(lg n)(lg lg n)2 bits, if not sooner. Thus the total time
for the algorithm is at most (lg n)1+o(1).

Theorem 2.1. Let n be an integer with n ≥ 8. Define j = dlg ne and k =

3 · 21000j dlg je2. Let L and R be real numbers such that L ≤ log n ≤ R and
|R− L| ≤ 2−k. Then b(log n)2c < L2 ≤ R2 < d(log n)2e.

This is a typical application of Baker’s theorem. Here is the general statement
of Baker’s theorem from [3, Theorem 1]: Assume that β0, β1, . . . , β`, α1, . . . , α`

are elements of a number field of degree at most d; that each βi has height at
most B ≥ 4, where “height” means “maximum absolute value of coefficients in
the minimal polynomial over Z”; that αi has height at most Ai ≥ 4; that Λ 6= 0,
where Λ = β0 + β1 logα1 + · · ·+ β` logα`; and that Ω = (logA1) · · · (logA`). Then

|Λ| > (BΩ)−(16`d)200`Ω log Ω. Baker actually states this bound with log(Ω/logA`) in
place of log Ω, but that improvement is only for ` ≥ 2.

Proof. I will show that f < L2 if f = b(log n)2c, and that f > R2 if f = d(log n)2e.
Note that either choice of f satisfies 4 ≤ f ≤ j2 since 4 ≤ (log n)2 ≤ j2.

By Lindemann’s theorem, logn 6=
√
f . Apply Baker’s theorem with ` = 1,

β0 =
√
f , β1 = −1, α1 = n, d = 2, Λ =

√
f − log n 6= 0, B = f ≥ 4, A1 =

n ≥ 4, Ω = log n < j, BΩ < fj ≤ j3, (16`d)200` = 21000, Ω log Ω < j lg j, and
(16`d)200`Ω log Ω lgBΩ < 21000j lg j lg j3 ≤ k to see that |

√
f − log n| > 2−k.

In particular, if f = b(log n)2c, then
√
f < log n, so

√
f < log n − 2−k ≤

R− 2−k ≤ L; i.e., f < L2 as claimed. Similarly, if f = d(log n)2e, then
√
f > log n,

so
√
f > log n+ 2−k ≥ L+ 2−k ≥ R; i.e., f > R2 as claimed. �

COMPUTING LOGARITHM FLOORS IN ESSENTIALLY LINEAR TIME 3

3. Floor of square root times logarithm

Here is an algorithm that, given positive integers m and n, computes b
√
m lg nc

and d
√
m lg ne:

1. If n = 1: Print 0, 0 and stop.
2. If n is a power of 2 and m is a square: Print

√
m lg n,

√
m lg n and stop.

3. Compute a precise interval [L,R] containing
√
m lg n, as explained in [7].

4. If [L,R] does not contain an integer, print bLc , dRe and stop.
5. Double the number of bits of precision. Go back to step 3.

For theoretical purposes, it is simplest to start with 1 bit of precision, as in Section
2. See [5] for square-testing algorithms.

The following theorem states that the algorithm terminates once the precision
reaches approximately 22401 lg n lg lg n lg(m lg n) bits, if not sooner. In particular,
the required precision is at most (lg n)1+o(1) if lgm ∈ (lg n)o(1).

Theorem 3.1. Let m and n be positive integers. Assume that n ≥ 2, and that n is
not a power of 2 if m is a square. Define j = dlg 2ne and k = 22401j dlg je dlg 2mje.
Let L and R be real numbers such that L ≤

√
m lg n ≤ R and |R− L| ≤ 2−k. Then

b
√
m lg nc < L ≤ R < d

√
m lg ne.

Proof. I will show that f < L if f = b
√
m lg nc, and that f > R if f = d

√
m lg ne.

Note that either choice of f satisfies 1 ≤ f ≤ mj since 1 ≤
√
m lg n ≤ mj.

If m is a square then n is not a power of 2 so n
√
m 6= 2f . If m is not a square

then, by the Gelfond-Kuzmin theorem, the quadratic irrational f/
√
m does not

equal (log n)/log 2. Either way,
√
m log n− f log 2 6= 0.

Apply Baker’s theorem with ` = 2, β0 = 0, β1 =
√
m, β2 = −f , α1 = n,

α2 = 2, d = 2, Λ =
√
m log n − f log 2 6= 0, B = 4mf ≥ 4, A1 = 2n ≥ 4, A2 = 4,

Ω = (log 2n) log 4 < j, BΩ < 4mfj ≤ (2mj)2, (16`d)200` = 22400, Ω log Ω < j lg j,
and (16`d)200`Ω log Ω lgBΩ < 22400j lg j lg((2mj)2) ≤ k to see that |

√
m lg n− f | >

|
√
m log n− f log 2| > 2−k.
In particular, if f = b

√
m lg nc, then f < R − 2−k ≤ L. Similarly, if f =

d
√
m lg ne, then f > L+ 2−k ≥ R. �

4. Applications

I wrote this paper to retroactively justify the claim that two algorithms in the
literature take polynomial time:

• Bach and Shallit in [2, page 268] state an algorithm that performs an inner
loop “for a← 2 to b(log n)2c.” They claim that the time for the algorithm
is “clearly” dominated by the time for the inner loop, which in turn is
o((lg n)6). However, they neglect to prove that b(log n)2c is computable
from n in time o((lg n)6).

• Agrawal, Kayal, and Saxena in [1, page 3] state an algorithm (repeated
on the front cover of the May 2003 Notices of the AMS) that performs an
inner loop for each integer a from 1 through “b2

√
φ(r) log nc,” where “log”

means lg. They claim that this algorithm takes polynomial time. However,
they neglect to prove that b

√
4φ(r) lg nc is computable from φ(r) and n in

polynomial time.

One could, in both cases, use a wider range of integers a; perhaps the authors
actually meant b(31487/65536) dlg ne2c and 2 d

√
φ(r)e dlg ne, both of which are

4 DANIEL J. BERNSTEIN

easily computable without the techniques in this paper. That is, however, not
what they wrote.

In my own presentations of the Agrawal-Kayal-Saxena idea, such as [6, Theorem
2.1], I used a smaller range of integers a, terminated by an easily computable
binomial-coefficient condition, which is also the condition that naturally arises in
the Agrawal-Kayal-Saxena proof. I am happy to sacrifice short formulas in favor
of simple, fast programs and straightforward proofs. I realize, however, that many
authors take the opposite view. This paper provides subroutines for those authors
to use.

References

[1] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P (revised) (2003).
[2] Eric Bach, Jeffrey Shallit, Algorithmic number theory, volume 1: efficient algorithms, MIT

Press, Cambridge, Massachusetts, 1996. ISBN 0–262–02405–5. MR 97e:11157. Available from

http://www.math.uwaterloo.ca/~shallit/ant.html.
[3] Alan Baker, The theory of linear forms in logarithms, in [4] (1977), 1–27. MR 58:16543.

[4] Alan Baker, David W. Masser (editors), Transcendence theory: advances and applications:

proceedings of a conference held at the University of Cambridge, Cambridge, January–
February, 1976, Academic Press, London, 1977. ISBN 0–12–074350–7. MR 56:15573.

[5] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Com-

putation 67 (1998), 1253–1283. ISSN 0025–5718. MR 98j:11121. Available from http://

cr.yp.to/papers.html.

[6] Daniel J. Bernstein, Proving primality in essentially quartic random time.

[7] Daniel J. Bernstein, Computing logarithm intervals in essentially linear time with the AGM
iteration.

[8] Krzysztof Diks, Wojciech Ritter (editors), Mathematical foundations of computer science
2002: 27th international symposium, MFCS 2002, Warsaw, Poland, 26–30.08.2002: pro-

ceedings, Lecture Notes in Computer Science, 2420, Springer, Berlin, 2002.

[9] Mika Hirvensalo, Juhani Karhumäki, Computing partial information out of intractable one—
the first digit of 2n at base 3 as an example, in [8] (2002), 319–327.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, IL 60607–7045

Email address: djb@cr.yp.to

