Refereed. Pages 128–130 in *Algorithmic number theory: ANTS-III*, edited by Joe Buhler, Lecture Notes in Computer Science 1423, Springer, 1998.

Bounding Smooth Integers (Extended Abstract)

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249) The University of Illinois at Chicago Chicago, IL 60607–7045 djb@pobox.com

1 Introduction

An integer is y-smooth if it is not divisible by any primes larger than y. Define $\Psi(x, y) = \#\{n : 1 \le n \le x \text{ and } n \text{ is } y\text{-smooth}\}$. This function Ψ is used to estimate the speed of various factoring methods; see, e.g., [1, section 10].

Section 4 presents a fast algorithm to compute arbitrarily tight upper and lower bounds on $\Psi(x, y)$. For example, $1.16 \cdot 10^{45} < \Psi(10^{54}, 10^6) < 1.19 \cdot 10^{45}$.

The idea of the algorithm is to bound the relevant Dirichlet series between two power series. Thus bounds are obtained on $\Psi(x, y)$ for all x at one fell swoop.

More general functions can be computed in the same way.

Previous work

The literature contains many loose bounds and asymptotic estimates for Ψ ; see, e.g., [2], [4], [5], and [9]. Hunter and Sorenson in [6] showed that some of those estimates can be computed quickly.

Acknowledgments

The author was supported by the National Science Foundation under grant DMS-9600083.

2 Discrete generalized power series

A series is a formal sum $f = \sum_{r \in \mathbf{R}} f_r t^r$ such that, for any $x \in \mathbf{R}$, there are only finitely many $r \leq x$ with $f_r \neq 0$.

Let $f = \sum_r f_r t^r$ and $g = \sum_r g_r t^r$ be series. The sum f + g is $\sum_r (f_r + g_r)t^r$. The product fg is $\sum_r \sum_s f_r g_s t^{r+s}$.

I write $f \leq g$ if $\sum_{r \leq x} f_r \leq \sum_{r \leq x} g_r$ for all $x \in \mathbf{R}$. If $h = \sum_r h_r t^r$ is a series with all $h_r \geq 0$, then $fh \leq gh$ whenever $f \leq g$.

3 Logarithms

n is

Fix a positive real number α . This is a scaling factor that determines the speed and accuracy of my algorithm: the time is roughly proportional to α , and the error is roughly proportional to $1/\alpha$.

For each prime p select integers L(p) and U(p) with $L(p) \leq \alpha \log p \leq U(p)$. I use the method of [7, exercise 1.2.2–25] to approximate $\alpha \log p$.

4 Bounding smooth integers

Define f as the power series $\sum_{p \leq y} (t^{L(p)} + \frac{1}{2}t^{2L(p)} + \frac{1}{3}t^{3L(p)} + \cdots)$. Then

$$\sum_{\substack{y \text{ smooth}}} t^{\alpha \log n} = \prod_{p \le y} \frac{1}{1 - t^{\alpha \log p}} \le \prod_{p \le y} \frac{1}{1 - t^{L(p)}} = \exp f,$$

so $\Psi(x,y) \leq \sum_{r \leq \alpha \log x} a_r$ if $\exp f = \sum_r a_r t^r$. Similarly, if $\sum_r b_r t^r = \exp \sum_p \left(t^{U(p)} + \frac{1}{2} t^{2U(p)} + \frac{1}{3} t^{3U(p)} + \cdots \right)$, then $\Psi(x,y) \geq \frac{1}{2} t^{2U(p)} + \frac{1}{3} t^{3U(p)} + \cdots$ $\sum_{r < \alpha \log x} b_r.$

One can easily compute $\exp f$ in $\mathbf{Q}[t]/t^m$ as $1 + f + \frac{1}{2}f^2 + \cdots$, since f is divisible by a high power of t; it also helps to handle small p separately. An alternative is Brent's method in [8, exercise 4.7–4].

It is not necessary to enumerate all primes $p \leq y$. There are fast methods to count (or bound) the number of primes in an interval; when y is much larger than α , many primes p will have the same value $|\alpha \log p|$.

$\mathbf{5}$ Results

The following table shows some bounds on $\Psi(x, y)$ for various (x, y), along with $u = (\log x) / \log y.$

x	y	α	lower	upper	u	x ho(u)
10^{60}	10^{2}	10^{1}	$10^{18}\cdot 5.2$	$10^{18}\cdot 11.6$	30	$10^{11} \cdot 0.327 -$
10^{60}	10^{2}	10^{2}	$10^{18}\cdot 6.73$	$10^{18} \cdot 7.28$	30	$10^{11} \cdot 0.327 -$
10^{60}	10^{3}	10^{1}	$10^{32} \cdot 1.44$	$10^{32} \cdot 5.07$	20	$10^{32} \cdot 0.246 +$
10^{60}	10^{3}	10^{2}	$10^{32} \cdot 2.278$	$10^{32} \cdot 2.580$	20	$10^{32} \cdot 0.246 +$
10^{60}	10^{3}	10^{3}	$10^{32} \cdot 2.4044$	$10^{32} \cdot 2.4345$	20	$10^{32} \cdot 0.246 +$
10^{60}	10^{4}	10^{1}	$10^{41}\cdot 0.70$	$10^{41} \cdot 2.88$	15	$10^{41} \cdot 0.759 -$
10^{60}	10^{4}	10^{2}	$10^{41} \cdot 1.191$	$10^{41} \cdot 1.370$	15	$10^{41} \cdot 0.759 -$
10^{60}	10^{4}	10^{3}	$10^{41} \cdot 1.2649$	$10^{41} \cdot 1.2827$	15	$10^{41} \cdot 0.759 -$
10^{60}	10^{5}	10^{1}	$10^{46} \cdot 0.99$	$10^{46} \cdot 4.07$	12	$10^{46} \cdot 1.420 -$
10^{60}	10^{5}	10^{2}	$10^{46} \cdot 1.679$	$10^{46} \cdot 1.931$	12	$10^{46} \cdot 1.420 -$
10^{60}	10^{5}	10^{3}	$10^{46} \cdot 1.7817$	$10^{46} \cdot 1.8069$	12	$10^{46} \cdot 1.420 -$
10^{60}	10^{6}	10^{1}	$10^{49}\cdot 1.82$	$10^{49} \cdot 7.14$	10	$10^{49} \cdot 2.770 +$
10^{60}	10^{6}	10^{2}	$10^{49} \cdot 3.025$	$10^{49} \cdot 3.463$	10	$10^{49} \cdot 2.770 +$
10^{60}	10^{6}	10^{3}	$10^{49}\cdot 3.2017$	$10^{49} \cdot 3.2453$	10	$10^{49} \cdot 2.770 +$

In the final column, ρ is Dickman's rho function.

References

- 1. Joseph P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the number field sieve, in [10], 50–94.
- E. Rodney Canfield, Paul Erdős, Carl Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", Journal of Number Theory 17 (1983), 1– 28.
- 3. Ronald L. Graham, Jaroslav Nešetřil, *The mathematics of Paul Erdős, volume 1*, Algorithms and Combinatorics 13, Springer-Verlag, Berlin, 1997.
- Adolf Hildebrand, Gérald Tenenbaum, On integers free of large prime factors, Transactions of the AMS 296 (1986), 265–290.
- Adolf Hildebrand, Gérald Tenenbaum, Integers without large prime factors, Journal de Théorie des Nombres de Bordeaux 5 (1993), 411–484.
- Simon Hunter, Jonathan Sorenson, Approximating the number of integers free of large prime factors, Mathematics of Computation 66 (1997), 1729–1741.
- 7. Donald E. Knuth, *The art of computer programming, volume 1: fundamental algorithms*, 2nd edition, Addison-Wesley, Reading, Massachusetts, 1973.
- 8. Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 2nd edition, Addison-Wesley, Reading, Massachusetts, 1981.
- 9. Sergei Konyagin, Carl Pomerance, On primes recognizable in deterministic polynomial time, in [3], 176–198.
- 10. Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), *The development of the number field sieve*, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.