
Bounding Smooth Integers (Extended Abstract)

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@pobox.com

1 Introduction

Refereed. Pages 128–130 in Algorithmic number theory: ANTS-III, edited by Joe
Buhler, Lecture Notes in Computer Science 1423, Springer, 1998.

An integer is y-smooth if it is not divisible by any primes larger than y. De-
fine Ψ(x, y) = #{n : 1 ≤ n ≤ x and n is y-smooth}. This function Ψ is used to
estimate the speed of various factoring methods; see, e.g., [1, section 10].

Section 4 presents a fast algorithm to compute arbitrarily tight upper and
lower bounds on Ψ(x, y). For example, 1.16 · 1045 < Ψ(1054, 106) < 1.19 · 1045.

The idea of the algorithm is to bound the relevant Dirichlet series between
two power series. Thus bounds are obtained on Ψ(x, y) for all x at one fell swoop.

More general functions can be computed in the same way.

Previous work

The literature contains many loose bounds and asymptotic estimates for Ψ; see,
e.g., [2], [4], [5], and [9]. Hunter and Sorenson in [6] showed that some of those
estimates can be computed quickly.

Acknowledgments

The author was supported by the National Science Foundation under grant
DMS–9600083.

2 Discrete generalized power series

A series is a formal sum f =
∑
r∈R frt

r such that, for any x ∈ R, there are
only finitely many r ≤ x with fr 6= 0.

Let f =
∑
r frt

r and g =
∑
r grt

r be series. The sum f + g is
∑
r(fr + gr)t

r.
The product fg is

∑
r

∑
s frgst

r+s.

I write f ≤ g if
∑
r≤x fr ≤

∑
r≤x gr for all x ∈ R. If h =

∑
r hrt

r is a series
with all hr ≥ 0, then fh ≤ gh whenever f ≤ g.



3 Logarithms

Fix a positive real number α. This is a scaling factor that determines the speed
and accuracy of my algorithm: the time is roughly proportional to α, and the
error is roughly proportional to 1/α.

For each prime p select integers L(p) and U(p) with L(p) ≤ α log p ≤ U(p).
I use the method of [7, exercise 1.2.2–25] to approximate α log p.

4 Bounding smooth integers

Define f as the power series
∑
p≤y
(
tL(p) + 1

2 t
2L(p) + 1

3 t
3L(p) + · · ·

)
. Then∑

n is y smooth

tα logn =
∏
p≤y

1

1− tα log p
≤
∏
p≤y

1

1− tL(p)
= exp f,

so Ψ(x, y) ≤
∑
r≤α log x ar if exp f =

∑
r art

r.

Similarly, if
∑
r brt

r = exp
∑
p

(
tU(p)+ 1

2 t
2U(p)+ 1

3 t
3U(p)+ · · ·

)
, then Ψ(x, y) ≥∑

r≤α log x br.

One can easily compute exp f in Q[t]/tm as 1 + f + 1
2f

2 + · · ·, since f is
divisible by a high power of t; it also helps to handle small p separately. An
alternative is Brent’s method in [8, exercise 4.7–4].

It is not necessary to enumerate all primes p ≤ y. There are fast methods
to count (or bound) the number of primes in an interval; when y is much larger
than α, many primes p will have the same value bα log pc.

5 Results

The following table shows some bounds on Ψ(x, y) for various (x, y), along with
u = (log x)/log y.

x y α lower upper u xρ(u)

1060 102 101 1018 · 5.2 1018 · 11.6 30 1011 · 0.327−
1060 102 102 1018 · 6.73 1018 · 7.28 30 1011 · 0.327−
1060 103 101 1032 · 1.44 1032 · 5.07 20 1032 · 0.246+
1060 103 102 1032 · 2.278 1032 · 2.580 20 1032 · 0.246+
1060 103 103 1032 · 2.4044 1032 · 2.4345 20 1032 · 0.246+
1060 104 101 1041 · 0.70 1041 · 2.88 15 1041 · 0.759−
1060 104 102 1041 · 1.191 1041 · 1.370 15 1041 · 0.759−
1060 104 103 1041 · 1.2649 1041 · 1.2827 15 1041 · 0.759−
1060 105 101 1046 · 0.99 1046 · 4.07 12 1046 · 1.420−
1060 105 102 1046 · 1.679 1046 · 1.931 12 1046 · 1.420−
1060 105 103 1046 · 1.7817 1046 · 1.8069 12 1046 · 1.420−
1060 106 101 1049 · 1.82 1049 · 7.14 10 1049 · 2.770+
1060 106 102 1049 · 3.025 1049 · 3.463 10 1049 · 2.770+
1060 106 103 1049 · 3.2017 1049 · 3.2453 10 1049 · 2.770+

In the final column, ρ is Dickman’s rho function.



References

1. Joseph P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers
with the number field sieve, in [10], 50–94.
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